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Introduction

Spherical harmonics are closely associated with

developments of gravitational or magnetic fields.

Their main importance in geodesy has its roots in

the (basis) property that the external gravitational

potential of the earth may be approximated by suit-

able linear combinations of outer (spherical) har-

monics.

Seen from potential theory the standard represen-

tation of a potential V defined outside a sphere

about the origin with radius R by a series of outer

harmonics

(=W p (cosX) 0Anm cos(mk) B Bm sin (mW)} (0.1)

with

r, 0, X: spherical coordinates

Pnm (normalized) Legendre function
nm

of degree n and order m

P* (t)= !2n+ P (t)
no no

(n-m)!
P*n (t= (2n+1) ( m). nm (t) (M > 0)

with

2 m/2 2 (2n-2)! tn-ma-2k
n( 1 ) ko ()2nk!(n-k)!(n-m-2k)!

- . ... . . -
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A, B : potential coefficients of degree n and

9' order m

2z i1 V(R,O,;L)P*0 c~e s0.2)
Ao f(cos) (0.2)

0 0

A 2: z
{ 11} f 1 f I V(R,e,X) PL(cos) Icos(,X) 1 si.8 ddl8 n o 0 0

is well - considered as a series expansion by mul-

tipoles in the center of the sphere, i. e. the field

of a homogeneous and isotropic distribution may be

adequately approximated by developments of spherical

harmonics. On the other hand, the series of spheri-

cal harmonics is less qualified for representing

the field of a source distribution. Because of the

slow convergence of the expansion comparatively Is-

borious work must be done to approximate local(den-

sity) anomalies by a partial sum of the type

~N R

Vn(X) ( E P:fl (cosO) {An, cos(.l) + B sin(mx)}. (0.3)

The price to be paid is the choice of a relatively

high degree N. This is why in the last decades many

7 efforts have been done to reduce algorithmic diffi-

- . .. .. . .... .. . . . . .. ~ 9. . . . .

-9 -..
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culties and computer time in generating spherical

harmonics.

But not only the slow convergence for modelling

local anomalies proves a difficulty in using spheri-

cal harmonic expansions. In practical applications,

almost all activities to compute spherical harmonics

numerically are restricted to the generation of one

and only one system of representation (related to

spherical coordinates), viz. the system

{()n+l y } (0.4)
r n,j n=0,1,...

j=1,...,2n+l

where Y* is defined as followsn j

Y* ( ) = P* (cose)
n,1 no

y* () = P* (cosa) cosA
n,2 ni

Y* () = P (cosa) sinXn,3 n

* • (0.5)

Y* () = P* (cos) cos(nX)

n,2n Pnn (oa
Y(,) = p* (cos) sin (nX)
n,2n+l nn

x = r(sinO cos)L: sine sin)., Cosa) T
r Ixl, 0.< .< 2w, 0o<.. .
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Indeed, as it stands, the system (0.5) has many at-

tractive features. Perhaps the most important are

its simple structure and recursive computability.

A number of different equation sets has been

described in the literature for suitably generating

the system

(Y;
yn,j n=0,1,...

j=1,...,2n+1

(e. g. Cl. Muller (1966), M. Gerstl (1978), C. Rizos

(1979), 0. Colombo (1982), R. H. Rapp (1982). A com-

parison of methods has been given by C. C. Tscher-

ning, R. H. Rapp, C. Goad (1983)).

In doing so special care is always needed to

ensure computational stability in the aeneration of
the associated Legendre functions. It is a critical

point to any calculation.

Furthermore, it should be mentioned that a po-

tential V is related to polar coordinates when

choosing an approximation of type (0.3). Thus dif-

ferentiations with respect to cartesian coordinates

cannot be performed in a straiqhtforward manner. In
order to determine the gravitational part of the

force acting on an artificial satellite close to

earth, for example, we need essentially the gradient

of the external gravitational potential of the earth.

Its representation must be free of singularities

caused by a special choice of a coordinate system.
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This is done in canonical manner by use of spheri-

cal harmonic representations with respect to carte-

sian coordinates. In addition, cartesian coordinates

seem to be more adequate if the attempt is made to

approximate the gravitational part of the earth's

gravity potential by means of outer harmonics (mul-

tipoles) using a non-spherical earth's model (e. g.

ellipsoid, spheroid, telluroid) as proposed by the

author (1983).

Thus the question arises of developing appro-

priate algorithms for numerical computation of

spherical harmonics related to cartesian coordina-

tes thereby avoiding any computational problem of

accuracy and stability.

The purpose of this report is to demonstrate

both that spherical harmonics can be evaluated exact-

ly using exclusively integer operations and that

the procedure of expanding the external gravitational

potential of the earth into spherical harmonics can

be performed adequately by use of outer harmonics in

terms of cartesian coordinates.

The report is meant to be a proposal for exact

computation of spherical harmonics; it is not un-

derstood to be the final word in speed and economy

in computations of e. g. high degree harmonics.

Nevertheless, at least in the opinion of the au-

thor, it is a remarkable discovery that, to any

L' .- " -. " ' ' '' ''.- ' L .. " . ' ' - .L -'. '.. ..- . . , .. . . . . , -- -.-, -



prescribed degree n, orthonormal systems of spheri-

cal harmonics can be deduced exactly, i. e. exclu-

sively by addition, subtraction and multiplication

of integers, without having any knowledge of spheri-

cal harmonics of orders different from n. Hence, as

long as we (are able to) use integer operations, pro-

blems of accuracy and stability do not occur; the

algorithm depends merely on available computer time

and memory.

Moreover, our approach provides us with exactly

given linearly independent systems of homogeneous

harmonic polynomials (in terms of cartesian coordi-

nates) which can be used for developments of the

earth's gravitational potential in series of outer

harmonics (adapted to a non-spherical earth's mo-

del).

In detail we are concerned with the following

considerations:

Exact Computation of Spherical Harmonics:

Starting point is the class P of homogeneous har-n

monic polynomials of degree n. Each H n P may ben n
represented in the form

H (x) = z C x (0.6)n Ca]=n O

- I a 2 03a C 1 2 xL32  x 3l +a2+a3=n aaa

1
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(a: multiindex of degree n). It is obvious that the

set of monomials

x = x I x 2 , (a] = n, (0.7)

forms a basis for the space P . The number of suchn

monomials is precisely equal to

SM(n) ,n+2 (0.8)

Hn denotes the class of polynomials in Pn that are

harmonic

H = {H n P n A H (x) = 0) . (0.9)n n n x nl

The dimension of n is 2n+1. In other words, there
n

are 2n+1 linearly independent functions H in H
n,j n

H .(x) = z C3 xa  . (0.10)n,J [a]=n aL

(j=l,...,2n+l)

The main result of the paper is that the coeffi-

cients Ci can be obtained as integers by integer

operations and that the solution process of determi-

ning the matrix c consisting of the column vectors

(c) , ... , 2n+1

can be made surprisingly simple and reasonably effi-

cient.

,',, "',-'.." .""-'',"". " "" " . ''.' . '.' " "'. ". "- "" "" " " '. ", "" ,'. "" "" "" "" "',- , '", '." " .""." " ." t ". "',' " 'j .'.-I
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In view of the homogeneity the functions H

may be rewritten as follows

(x) = Ixin  Z Cj  .

n~j(*J=n a

(x = Ixl , ICl = 1)

The functions

H ( ) = Cj  , (0.11)
nj "[a]=n a

(j = 1,...,2n+1)

form a maximal linearly independent system in the

space Sn of all (surface) spherical harmonics of de-

gree n. Consequently, the system

H1 Hn  (x) (0
.i 2n+1  n,j j=l,...,2n+l (IxI>°)(0.12)

represents a maximal linearly independent system of

outer (spherical) harmonics of order n. Obviously,

the system (0.12) does not consist of polynomials

but it is a set of algebraic functions which are

homogeneous of degree - (n+1).

Corresponding to the maximal linearly indepen-

dent system (0.11) of surface spherical harmonics of

order n there exists a system

fs n (013)SJ.J=l,...,2n+l



such that

I * ( ) S * -E w 6 j

(dw: surface element, 6 ji : Kronecker symbol).

As usual the system can be constructed by linear

combination of the members of the system (0.11),

i. e. each S* may be represented as follows

2n+1
S* 11, - bJ3  H () =1. (0. 14)

n~j( - 1= nl n,l E

But this means that we can find 2n+1 vectors

1 2n+1

determined by

2n+1
Bj b'l 1=[a n,

such that

* W~ E BJ E , = 1 . (0.15)
n ,j [cL]=na

It will be shown that the coefficients Bj can be de-

termined again only by application of integer opera-

tions.
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Approximation by series expansion:

Any function V satisfying the following properties

(i) V is continuous in lxI > R and twice

continuously differentiable in IxI > R

(ii) V is harmonic in IxI > R

(iii) V is regular at infinity

may be represented in the form

- .2n+1 n+ 1

V(x) : n +1 R (  1 V( ) n (n) dw) S n (). (0.16)
nzo Ji1 1f Il= n~j n

(x - r , r - Ixi , ICI = )

More explicitly this reads: given an error bound

t> 0, then there exists an integer N = N (6) such

that

N 2n*1IV (X)- ',r V+ ( )"+) S (n)l.J+ d,.>s,(.) . s ',+(~ W 1 (0o- 7)

holds for all points x c R3 with IxI > R > R.

P.

• • l,,l- *. 9 - . ' . ,, , + -,, . 5-, 5 - .. 5- ,



From the addition theorem (decomposition formu-

la) it follows that

2n+1
%/!2n+1 I I~ i P* Y*,( Yn*.(re (0.18)noj1 nj

2n+ 1

J=1 n~j

for any two unit vectors n i. Therefore, for every

index N and all x c R3 with lxi > R 0> R our appro-

ximation V Nto V

Nx) N 2n+1 R n+1 1 ~VRi (~ w ~.() (.9
Iz ~ i~x iI=i 1 nj () ( . 9

coincides with the (standard) approximation

N 2n+1

N njo j=j X7 lxi - IriI= 1 ~

Furthermore, each element Y is expressible in

terms of the system IS~ I nvc
n,j J=1,...,2n+1' advc

versa. In other words, even if we base our approxi-

mation process on the conventional system

{[** A1 we are able to do this by means
n,j n=0, 1,...

J =1, ... ,2n+ I

of the functions S i e. suitable linear combi-

nations of the system (0.11).
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The paper ends with some reflections about the

role of outer harmonics (multipoles) in orthogonal

expansions using a non-spherical earth's model. The

mathematical procedure and the theoretical back-

ground developed by the author (1983) are briefly

recapitulated. Many advantages of the classical

(strictly) spherical approach, of course, cannot be

maintained, when outer harmonics will be used as

trial functions in approximations of the external

gravitational potential adapted to a non-spherical

earth's model (e. g. ellipsoid, geoid, telluroid,

spheroid, and (at least in principle) real earth).

Nevertheless, numerical examples make us hope to

implement an outer harmonic (multipole) approach to

the external gravitational potential of the earth

related to a non-spherical earth's surface.

Seen from mathematical point of view, the sample

examples open at the same time new numerical per-

spectives in solving exterior Dirichlet's boundary-

value problems by orthogonal expansion using outer

harmonics.

mo.~-. -
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1. Notations

R3 denotes three dimensional (real) Eucilidean

space. We write x,y,... to represent the elements of

R3 . In components we have

T )Tx = (Xl,X 2 ,X 3 ) , y = (yl,Y 2 ,y 3

Scalar product and norm are defined, as usual

x-y = x 1y + x2Y 2 + x3Y 3  (1.2)

2 2 2 2
x - x x + x 2 + x3  (1.3)

Ix, = x + x + x(1.4)

Let a = (al, a 2 9 C13)T be a triple of non-negati-

ve integers a,, a2, 2 3 We set

a! a . a a 3 ' (1.5)
1. 2 3

a] = a +a 2 + 3 (1.6)

We say a = (al, a 2  a3)T is a multiindex of degree n

if (a] = n, n: non-negative integer.

As usual, we set

a OLa t
= 1 2 3x = x I x 2  x 3

~~~~~~~. . ..... o . ...o-o ,- - .. .... .-... ,..... .°. ,.-..... .... • . . ... -•.
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and (1.7)

x x x 2 Ox x al a 0'28*
x1  2 3

An easy calculation gives

(x +x +Xn nI a

1 2 x 3 ) = (a=n

and (0.8)

(xy~y x) = y!Lx
11+2y2x33 [a]l=n a

Furthermore, we have

x = { 0 for a 0i and (a] [01] (19
x *I! for a 0 B19

Eachx cR3,X (I1'21 x3 Twith lxi 0, ad-
wits a representation of the form

x =rE r = xi C (EV ( 1 2,)T,(.0

where e R t, IEI = 1, is the uniquely determined

directional (unit) vector of x. The unit sphere in

R3 will be called 0. As it is well-known, the total

surface 11011 of a ist equal to 4 a:
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111 f dw =4z (dw: surface-element),

Let c 1C, C 3 form the (canonical) orthonormal

basis in R 3:

2' 0]) 3 (g]
Then we may represent the points ~EO in polar coor-

dinates

= t F_ /t 2 (cosk C£1 + sink e2) (1.11)

(8: polar distance, X: geocentric longitude):

T T(sinO cosk , sinO sink , cosG)

In terms of polar coordinates the Laplace-operator

A in R

v a82 8 2 812 (.2
Vx *v x (T-1) +(6'2) +(Zx-) (.2

is represented as follows

A a 82 2C1 A 1 (1.13)x (Sr+r r 2
r

where A * denotes the (Laplace-) Beltrami operator

of the unit sphere 0

A; (1-t 2)(2_)2 2t -+ 1i ( 2 (.4
a8t a x
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2. Homogeneous Polynomials

Let P nbe the set of all homogeneous polynomials
n3

of degree n on R . Thus, if H n £ then

1 2 3H (x) X C 8  1 x2 X
n a a2 +8 3 =n C

X C8 Xm (2.1)
[aJ=n

It is obvious that the set of monomials x, [aJ=n,

is a basis for the space P n. The number of such mo-
nomials is precisely the number, M = M(n), of ways

a triple a of non-negative integers can be chosen so

that we have [s]=n. Thus M is equal to the number of

ways of selecting 2 elements out of a collection of

n+2 ones. This means, the dimension of P is equaln
to

M =M(n) =(n+2) =(n+1) (n+2)(2 )
2 2(2)

Let H (V ) be the differential operator associatedn xa
to H n(x) (i. e.: replace xO formally by V Xin the

expression of H n(x)):

H (V z C 8 8 3 8
n x (u]= 1t 2L I at2 8l3

Cal~~n 1 2 3 x2a

= z C (V~ O (2.3)
(8] =n
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If such an operator is applied on a homogeneous po-

lynomial L nof the same degree n

n

[B=n

we obtain as result a real number:

CH (V )h (x) E x B 81 x~8 X~ _ A
[cI=n[B]6=n 2 x 3

Z C D . (2.5)

Clearly, we find

[Hn(V L L(x) L L(V) H (X) ,

(2.6)

[Hn (V )]H (X) > 0

This gives rise to introduce an inner product

(.,*p on the space Pn by letting
nn

(H n'L n) P = [H n(V x)] Ln(X) (2.7)
nn

for H and L homogeneous polynomials of degree n.n n
Clearly, we have
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() (c H L Ln) F  = c (H L Ln P  for c c R

n n

(ii) (Hn+Kn' Ln) P  (Hn9 Ln) P  + (Kn9Ln)P
n n n

for H n,L n,K Pn

(iii) (Hn,9Ln) P = (Ln ,Hn)p
n n

(iv) (Hn,Hn)F  > 0 for Hn 0.
n

The space Pn equipped with the inner product (-,)p

is a finite-dimensional Hilbert space. The set of n

monomials

x' i [a]=n} (2.8)

forms a complete and closed system of orthonormal

elements in Pn

For each H n P we have

H (x) = z I H (V y x (2.9)n [a)=nQ! n y

Hn V )I n! C a
a y )]!- [eiJfn x- y

= [H (V ( )

n y n!

.- nH

= (x v)n H (y)
n! y n
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In other words,

nxy n

P equipped with the inner product (..~ is a
n n

M(n)-dimensional Hilbert space with the repro-

ducing kernel

(x*Y) n
K(ri;x,y) = no (2.11)

i. e.: (i) For every fixed y, the function

K(n;-,y) belongs to P
n

(ii) For any H ne P nand any point x the

reproducing property

H n(x) = (K(n;x,y) H Hn(Y))p
n

is valid.

K(n;x,y) is the only reproducing kernel in P
n

No, et1Hn,j )j=1,...,M' f n.,j I J=,.,M be two

orthonormal systems in Pn

(H, 9 H )P 6.

(2. 12)

(L n~j L nk)P = jk
n
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Then, for j =1,...,M, we have

M
H -~ I L (H nj Lflk)p

-k=1 n

(2.13)

M
L =~ I H nk(L ,'H kp

k=1 nn ~ ~~

Therefore it follows that

M M M
XH n~(x) H nj(y)Y YLnk (X) H.(y) (M ,L nk)P

(2. 14)

M M M

j=1 j=1Wn

Consequently,

M M
I H .~j(x) H .(y) =L .~j(x) L .~j(Y)

(2.15)

Hence, in particular for the orthonormal system of

monomials (2.8), we obtain
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Let (H I be an orthonormal system inn,j j=1,...,M
P . Then

I .(x.y)n M

= H (x) H (y)n! I~ n,j n,j
j=1 n,

Given M points xl,...,x c R3 and M values

dl,...,dM E R, we will be able to solve the inter-

polation problem

M
1 bk Hn,k(xj) = d , = 1,...,M (2.16)

k=1

if and only if

det (Hn,k (xj))j~ 1,.., 4 0 (2.17)

A system of M points xI,....,x M is called fundamental

system relative to P if the matrixn

(H (x )) (2.18)
n,k J =1,...,M

k=l1, .. . , 1

is of maximal rank M.

Let us prove the existence of a fundamental sy-

stem relative to P . As orthonormal system (H .1,n n

the functions Hn,... ,H are linearly indepen-
n,,14

dent. Hence, there exists a point x1 for which

I"- '. " % - . " • . " o "% ' - ' . . - . . " . " - .. • .= . . .. , .. . . °: ': '° '" " " . . . o. " . . " . . ° ° : .: : ° - : ,: ' . " ° ' ,
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H 1 (x 1) 4 0

Now, there must also be a point x 2 such that

4 0
Hn2 (x) Hn 2 (x)

for else we would have a contradiction to the li-

near independence of H n1IH n,* In the same way

the existence of a point x3 can be deduced by the

requirement

H (x) H (x) H(x)
n,1 1 n,1 2 n,1 3

H n,2 (x I Hn,2(x 2  H n3 (X 3 )o

Finally, we obtain a system of points x1 ,...,XM such

that

Hn (x) H. H (x)

4o
HnM(xi H* H (XM

ie. a fundamental system relative to P
n
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To every H n Pn, there exist real numbers

bl,...,bM such that

M
H n I b k Hn,k (2.19)

k=1

Now, assumed x1 ,..., XM is a fundamental system rela-

tive to P n, the linear equations

M
Ia H n=~k b , k=1.,...,M , (2.20)

are uniquely solvable in the unknowns a1,..., aM*
Thus we obtain

M M
H =a H .(xk) H. (2.21)

n k=1 j=1 nj

Le Hn,j )j=1,...,M be an orthonormal system in
Pn. Assume that (xkl I .. , is a fundamental

system relative to P n' Then, each H n P nis

uniquely representable in the form

H
H n(x) I a.i K(n;x.,x)

J=
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3. Homogeneous Harmonic Polynomials

Let H C P be the class of all polynomials in
n n

P that are harmonic:n

H = H P A Hn(X) = 0) . (3.1)
n n n xn

For n < 2, all homogeneous polynomials are har-

monic.

For n > 2, let Hn-2 be a homogeneous polynomial

of degree n-2, i. e. H P Then, for eachn-2 n-2oTefrec
homogeneous harmonic polynomial Kn, we have

( nx_2 Hn- 2 (x) , Kn(X))p (3.2)
n

[n_ 2 (Vx)] Ax Kn X)

= 0 .

This means x12 Hn- 2 (x) is orthogonal to Kn (x) in

the sense of the inner product (-,-)p
n

Conversely, suppose that H is orthogonal to all
n

elements L of the form
n

L(X) = IxI2 Hn2 (x) H 2  EPn-2

then it follows that

'. . . . . . . . . . . . . . . - . .
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0 = Ix 1 2 Hn 2 (x) , H (x))P (3.3)

[ H n2(V x)] A xi a(x)

= Hn-2 ' AHn )P2

for all H 2 " P n2. This is true only if AH n =0,

i. e. H nis a homogeneous harmonic polynomial.

P n n > 2, is the orthogonal direct sum of Hn
and HI., wheren

#f.L. = xI2  p
n n 2

is the space of all members L nwith Ln(x)

J2 L n(x), L 2 C P n-29 n.e. each homo-

geneous polynomial H nof degree n can be decom-

posed uniquely in the form

H n(x) K Kn(x) + IX12 H n2 (x),

where K is a homogeneous harmonic polynomial ofn
degee an Hn-2 isahomogeneous polynomial of

degree n-2.

Denote by p and p, the projection operators in

Ponto Hn and Hi respectively. Then,

n n p

H n H + .L n (.)
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In other words,

K n(x) p Hn(x)

(3.5)

jx1 2 Hn_ 2 (x) P. Hn(x)

Clearly,

2 - (3.6)

For all H, L £ P

(pHn , Ln) P  (Hn , pLn) P  (3.7)
n n

Moreover, we have

pH = pK = K . (3.8)
n n n(38

The dimension N(n) of H follows easily from the' n

fact that

N(n) = dim H (3.9)n

= dim P - dim HlJn n

dim Pn dimP

Explicitly, this reads

dim H = (n+2) (n) (3.10)n "2 - 2)( .o

- 2n +1

* . - . . . . . .- . .. - . - . - - . . . - - . .* . , .- -|
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This means there exist (2n+i)-linearly independent

homogeneous harmonic polynomials of degree n.



4.* Addition Theorem

Our aim now is to give the explicit representa-

tion of the orthogonal projection pH nof a given

homogeneous polynomial H . For that purpose we needn
some preliminaries.

A result due to E. W. Hobson (1955) yields for

1 1,2,3

[n/218 n 1 = ()nl (2n)! 1 (_1)s n!(2n-Zs)!' lxi2s sj

where we have set

Pa n/2J (n1 (_,)n])

[n2j for n even

~for nodd.

In other words, we find

1 (1) (Z)! ~[~2J(1)s n!(2in-s)! 2ss
x -7 '1 0 12n+1-s!s I I~ n')(M!) 2" IxI z

(1 1,2,0)
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Since the differential operator A is invariant with

respect to rotations, it is easy to see that

n 1 (2n)! 1 [ N/2] n!(Zn-2s)! n
Sn 12;7( . - I (-Vi (20!(n-s)! x (x
I(n!) 2 s=O

3
is valid for every y e R . Now, as we have seen in

chapter 2, each H n P may be represented in the

formr

M
H n(X) = c. (x. x) n

j=1 J

where ci, j=1,...,M, are suitable coefficients and

jj , M is a fundamental system relative to

P.
n

Consequently, we have

Let Hn be a homogeneous polynomial of degree n.

Then for x c R, lXI 4 0

CH (Vx)] 1 (4.1)n xl

- ( 1)n (2n)! 1 [n/21 -'s n!(2n2s)' j,2s (x)

n ) l2n+ 0 (2n)!(n-s)!s! n2. (.) x I s=O
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From the considerations given in chapter 3 it

follows that

nH (Vx 17 =K (V 1)+[CH (VI&~A

[H(V7x TKv) n-2'Tx "x1 77 (4.2)

Thus, in connection with

= 0 lxi 4 o
(4.3)

3
A K (xW 0 x C Rx n

we obtain for lxI 4 o

[H n(V) Tx =M (K n(V)] 1I (4.4)

-,()n (2n)! 1 K Wx

Therefore, by comparison of (4.1) and (4.4), we get

Let H be a homogeneous polynomial of degree n.n
Then

[nfZ2s
pH() W fs-=s0l2-2~ IxI12sas H (x).n 8=0 (2n U n-a)ls n

(4.5)

Observing

A,(y) =n(n-1) 1 2 (ynZy c RO (4.6)
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we obtain, in particular,

p xyn(4.7)

1 Ln2] j)5 (2n-.2s)!(n!)2 ixs iyi2s(xy)n-2s.

Hence, after an easy calculation, we find by using

polar coordinates

x = ixI EC

y = lyir , n C

the equation

nI(Xy (4.8)

[n/2]
=(2n+) 2-! s=O Yn I(_) 2'(n-2s)! n-s)!s!

_ 2n+ n1] -2
s=O 21 (n-2s)!(n-s)!s!

nLet (H,..,I+ be a maximal orthonormal

n n,j J=1,...,M-(2n+1)eamxil

orthonormal system in HLL. Then the union of both
n

systems

n,j j=1,..., 2 n+l1 ( n,j j=l,...,M-.(2n+1)(49
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forms a maximal orthonormal system in P
n

Therefore it follows that

(xy (4. 10)

2n+l M-(2n+1)
I H n(x)H n(Y) + I L n (x) L n,(Y)

for any two elements x, y c R.

Furthermore, in view of the definition of the pro-

jection operator p, we get

2ui+1 M-(2n+l)

j= ~ jj=1 n ,~ n ,

2n+1 M-(2n+1)
=p ( H (x) H .(y))+ p ( L (x) L .(y))

J n n,j J= n,j n

= H (x) H .(y) (.1
n , n,j

On the other hand, as we have shown above

P ! (4.12)

QW 2Z~iZ n! ' yf [n 2]1) (2n-2s)! (e)-s
S=O 2 (-2s)'(n-s)!s!
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By comparison of (4.11) and (4.12) this yields the

addition theorem of homogeneous harmonic polynomials:

Let (Hn,j j=l,... ,2n+1 be an orthonormal system

in H with respect to (-,-)p . Then, for
nn

x,y c R , we have

2n+1
I Hn.) H .(y)

. Hn,j ) n,j

(2n+l) 2n-n! IxVn jyjn p (En)
(2n+1) n

(x -- xi , y = Iyl n ; En C )

where we have used the abbreviation

,) [n/2] (2n-2s)!... P (t) = I (_t)s .2- s tn- s

n =O 2n(n_2s)!(n-s)!s!

(t [-I'l])

The function P n n=O,1,..., given by

P (t) /1 (_,)s (n)( 2n2s 2s
nnO I
Pn~ = Po~t) 2n  s=Os n

(t C [-1,1])

is the well-known Legendre function.

P is uniquely determined by the following pro-
n

perties:

L"



(i) P nis a polynomial of degree n in[-,.

+1

fii JP(t) P(t) dt=0 for n 4m

(iii) P (1) = 1n

This is easily seen from the usual process of

orthogonaliza tion.

. . . .. . . . .
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5. (Surface) Spherical Harmonics

Let S denote the space of all surface sphericaln

harmonics of order n, i. e. the set of all restric-

tions

H nIn (5.1)

of the members H n H to the unit sphere 0. As Hn n n

is assumed to be homogeneous, the restriction H n n
of Hn to 0 is given by

x

Hn (E) Hn(7) , x 0 , e Q 0. (5.2)

The restriction map

H - H nI, . n n

is an isomorphism of H onto S n'i. e. (i) each

element Sn c S is associated to one and only onenn

element H c H (ii) if the elements Sn, T e Sn n n n n
correspond to the elements Hn, Kn £ Cn, then the li-

near combination a S + b T c S corresponds to the
n n n

element a H + b K c H (iii) different elements ofn n n
S correspond to different elements of Hn n

Let us consider S as subspace of the space
2 n

L2(0) of square - integrable functions on 0 (equip-

ped with the inner product (-, () ). Then thereL2(

are defined, for elements H c H K c H the fol-
n n' n n
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lowing two inner products

(Hn K)
n , n L2( a)  f Hn() Kn() dw ( )

' " andand (5.3)

(H, ) = H(V x )] K (x).n n x nn

We now prove a theorem which is of basic impor-

tance for our task of exact computation of spherical

harmonics:

For H e H K c H
n n m m

n!-2 n
(Hm IK n) n2 (6ri(2+7 H M(V )J K n(x),(H'nL 2(o) = nrn (2n+1)! Hm(x) Kn(X

(5.4)
6 is the Kronecker-symbol.nm

Proof. By virtue of Green's formula it follows that

1x , dw(y) (5.4)TZ1-7yen n n ~ nxy;
y y

for all x e R with IxI < 1, where -S- denotes the
derivative in the direction of the outer normal.

Therefore we find

[m (V x)] Kn (x) (5.5)
1 1 a a 1

K n(y) (v [H (Vx)]Ix-yl} ay)

...... , . - ...............
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For x 4y we have

[H (V,~J~l = m (2m)' H m (x-y) (5.6)

m x Tx--7yml in" Ix-YI m 1

This is equivalent to

(H (2m)! - H m(y-x)(57
[H(V)] 1 - (an!X m 1

Inserting (5.7) into (5.5) gives

[H(V x)] K n(x) (5.8)

12m+1 any jy)IK+(y dw (y)

It is easy to see that for m 4 n

CHm(V x)] Kn(x)Ix~=o 0(59

and for m =n

CH )]V Kn(W)I = [H m(V x) K n~ W (H m Kn )p .(5.10)

n

Therefore we obtain
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-* H (y) H, (y)._ll+l 8ny Kn(Y)-Kn(Y) ryI iy2m+1 dw(y) (5.11)

0 for m 4 n

,'- ra !~ y- -___

2 : MI (Hmi nK for in )

Since the normal derivative of K n(X) and H (X) are

equal to

a
8 =~ n K (E;)

Tr Kn (rn)Ir= = n

and (5.12)L8
Hm (rE)I r=1 m Hn(E)

respectively, it follows that

• 1 M(y) 8 H (y)

2__l __ an-n KyK+fy dw(y) (5.13)

= .. f {n H (E) K (F)+(m+-)H (E)K ( )} dw (E)

n + m f -H(E ) Kn(E ) dw (E)

Thus, by combination of (5.11) and (5.13), we

finally obtain the desired result.
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For H cH K c Hnl n ' m m

8

(HmK n) 2(6 nm [H n(V x)] K n(x)

an is given by

(2n+1)! "

2n n!

To any orthonormal system in H with respect to
( ,n

n

n,j j=l,...,2n+1

there corresponds an orthonormal system in L2 (U)

with respect to (-2
L 2(Q2)

{snn,j j=l,...,2n+l

given by

5* = /K * (5.15)
n,j n n,j

and vice versa.

Hence, the addition theorem allows the following

transcription into the space Sn of surface spherical

harmonics:

[.I



-%7 T0

Let {S* }j=1,...,2n+1 be an orthonormal system

in Sn with respect to (-,-) . Then, for(n

2n+1
S (E) S= (2n+l) P

J=In

We discuss the most frequently used special case of

the addition theorem.

Let

S(jI-t coSX , f-t 2 sinX , t)T

Fn- = cos i , f7 2sin+, )

Setting t cosO , s = cosT , 0 < 0 , T < I

we obtain

= (sine cosx , sine sinX , cos)T

vi = (sinr cos4 , sinr sin+ cosT)T

(0 < X, < 21)

Thus it follows that

:: t- = _ cos(X-+) + ts

= sine sinT cos(X-4) + cosO cosT
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For our orthonormal system in S with respect to

we pick (Y * I (cf. (0.5))
L 2 (a) n,j J=1,...,2n+1

/22n+P (t) 7 P M oaxCos

TnPi (t) n o) I Pn~ (t)co)

/22~)P (t) sink. M t sink.
Tn1!ni nI

/2(2n+1) (-+n! P- cos(n.) = P* t osn.
(n n! Pnnt n nW onx

P2(nl (t)n sin(n)) = P* sin(nX).

Then, by virtue of the addition theorem, we obtain

2n+1

n= n ~jj

-(2ri+l) P (cose) P (COST)
n n

+ 2(2n+1) I T-ui; P (cos8) P (COST) cos m,-,

On the other hand, we have

P~~ (E)n (sinO sinr COS().-+) + COSO COST)

n n
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Thus it follows that

P (sine sinT con (A-+) + cose cosr) (5.16)

P (cose) P (Cos-)

+ 2 -X P2 Cos)(cooe) P 0m(COS) co m)

which is the classical addition theorem (decomposi-

tion formula) for Legendre functions.

Conventionally the functions P defined by

Pno(t) = *n+- Pno(t) (5.17)

(n-m)! Pnm(t)P m(t) : /2( 2n+1 ) (n+m)' : m

and the trigonometric expressions

sin (mX) (5.18)

Cos (mX)

are computed by recursion.

The generation of sin(mA) and cos(mA), m > 2,

can be done through the following recursion rela-

tionships:

sin(mx) = 2 coaX sin ((m-1)X) - sin ((m-2)X)

cos(mX) : 2 coaX con ((m-1)X) - con ((m-2)X).

- -. . .. '9 ', .
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These relationships are useful for point calcula-

tions, but they are inefficient for use if a set of

points at a uniform longitude interval is being

considered.

The generation of the functions P* is "criti-
nm

cal to any calculation involving spherical harmonic

expansions. In choosing an algorithm one must con-

sider the speed and stability and accuracy of the

procedure." (R. H. Rapp (1982)). The essential point

is the sensitivity to small computational errors

when n increases. In the past few years a number of

different ways have been described in the litera-

ture. A comparison of methods has been given by

C. C. Tscherning, R. H. Rapp, C. Goad (1983).

[ ~ ..............................
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6. Ixact Computation of Linearly Independent

Systems of Homogeneous Harmonic Polynomials

Our purpose now is to explain the theoretical

background of an alternate method for computation of

spherical harmonics.

The concept is based on the observation that any

linearly independent system

(H (6.1)
n,j j=l,...,2n+1

of homogeneous harmonic polynomials of degree n

H n,l(x) = Z 1
(a]=n a

. .(6.2)

H (x) E C 2n+x
n,2n+1 [a]=C ]=n

can be generated by exact computation of the coeffi-

cients Ci , j = 1,...,2n+l (i.e. exclusively by in-
teger operations). That is,the functions Hn,j are

available globally in closed form as linear combi-

nation of monomials.

1) We write briefly C j instead of C j  when confu-
a n;a

sion is not likely to arise.

I---*

*. .CC.°.



Given a homogeneous polynomial H of the form

0n

H(x) = Z C x a n > 2 (6.3)
[a]=n-

Assumed H is harmonic, i. e.,n

A H (x) = 0 x e R3, (6.4)
x n

we obtain

A H (x) A E C x (6.5)
x n x [a]=n a

= Z C Ax) = 0
[a =n

Thus it follows that

.- C CO [a(CLI) x 2 x Za 1 x , lx Zx ](6.6)
a Cc 1(c1-1)1 x2 x3 . 2(a2-) 1 X2  3 +*3(a3-1)xl 2 ' x3 ](6)

= 0

We discuss the terms

1-2 0t2 a 3

1 1 (1-1) x I  x 2  x 3

1 1 1 a2 a

a2 (a2_l) xl x 2  x 3 (6.7)

21 02 03-2

03 (a3-1) x I x 2  X3

(CI + 02 + a3 = n)

2
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in more detail. Every term in (6.7) with index

at= 1'VL29 a satisfying a1I + OL2 + t3 ni
homogeneous polynomial of degree n-2. Hence, the

sum

A H (x) (6.8)
x n

a -2 a 2a' al a2-2a a L1 a 2 a3-2
X C a(a 1(at-1)X 1 X 2 X 3 '02 (a 2-1)X 1 X2 X 3 na(ft3 1)x1 X 2 X 3

is a homogeneous polynomial of degree n-2. There-

fore AH can be represented in the formn

A xFn (x) I DB x .(6.9)

[01=n-2

The coefficients DB are given by

D [E= C Ba (6.10)

where mB is defined as follows

a1 (a1 1 for B-a =(-,0T

a (O-i) for O-a = (0,-2,O) T
m -

a 3 (a3 -1) for B-a = (0 ,0 ,2 )T(.)

0 otherwise
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H nis assumed to be harmonic, i. e. A xH n(x) 0
n 3 x

identically for all x c R .But this means all

numbe B D re equal to 0.

Hence, we have

E C mom 0 (6.12)
[mebn 0

for all 0 with [0] n-2.

Now, (6.12) is a linear system of (n equations

in n( ) unknowns Ce [a] =n.2

2

The matrix

m = (m~ O) (6.13)

has (nl rows and (n+2) colums a epri2 2ums mca bepri
tioned as follows

m = 1i r I (n) (6.14)
2

(n) (n+2 _n)
2 2 2

=2n+l

where 1 = (186 is a (n) by (n) matrix

and r = (r86 is a (n~ by (n1+2).. (n)

matrix.

Ip For the set of multiindices of degree n we in-
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troduce a binary relation between elements

.,, (a<, , Mj aj)T
1 2 '3'

designated by " >" and defined as follows:

a' > a" (6.15)

if and only if one of the following relations is

satisfied

at > all?

or

,, .l a!. , . > all
or

all all a > all
1W ' - 2 ' 3 3

The binary relation " >" implies an ordering

for the multiindices a, [a] = n according to the

mapping
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(n, 0, 0) ]

(n-, 1, 0) - 2 1 2
(n-i, 0, 1) - 3 J
(n-2, 2, 0) - 4

(n-2, 1, 1 ) - 5 3
(n-2, 0, 2) - 6

* n+2

(0, n, 0) (n2 )-n
2

* :n+1

(0, O, n) (n+2)2

In the same way, the set of multiindices B,

[B] = n-2, may be ordered by increasing integers i,

< i < (n). Hence, in canonical manner, each pair

(B,a) with [B] = n-2, [a] = n corresponds uniquely

to a pair (i,j), 1 < i < (n), 1 < j< (n+2)•

In this notation the matrix

m = (m ) , [B] = n-2, [a] = n

can be rewritten in the ordered form

< n) 1 < < (n+2)
m = (m..) , 1 < i < ( n"2

Analogously

1 = ) , [B] = n-2 , [y] = n-2

.- -% -. . . ... . .. .. .. -... ..- ...... . . . .. - -. .--.. . . .- ... .b ..', ., . .-.. -... . . .. .. .- '
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becomes

1 =(i) 1 ~< 1 <~i- (n).

From (6.11) it can be deduced that

1 o0 for i j ,..,nij 2

But this shows that 1 is non-singular, hence, the

matrix m is of maximal rank:

rk (in) = (n). (.6

Therefore we are able to find (n+2) -(n), i. e.

2n+1 linearly independent solution vectors

of the homogeneous linear system (6.12).

According to standard conlusions in Linear Al-

gebra the (n+2 by 2n+1 matrix a consisting of the

vectors (A I) 2 . 9 (A 2+

a = ((A I),...,(A 2nl) (n+2) =M (.7

2n+1

may be partitioned in the following form



p.
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ru (n+2 )-(2n+l)

a= 2nl (6.18)

where i is the (2n+1) by (2n+1) unit matrix.

Then the linear system

ma = 0 (6.19)

can be written as follows

lu = r . (6.20)

Since 1 is a (2n+1) by (2n+1) upper triangular

matrix, the unknown matrix u can be computed by

(2n+l)-times backward substitution.

The elements of the matrix m are exclusively

integers. Therfore, any solution AM, [a] = n of the

linear system (6.19) is a column vector of rational

components. Hence, there exists a matrix

1 2nn)"o"-c = , n ,

the elements of which are exclusively integers (ob-

serve that if (As), [] = n, is a solution of

(6.19), then (C) = k (A), [a] = n, k integer, is

a solution, too).

In other words, the solution process can be

performed strictly in the modulus of integers.

4-
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Exact computation (without rounding errors) is pos-

sible in integer mode by use of integer operations

(addition, subtraction, multiplication of inte-

gers)o

When the matrix c has been calculated, the ho-

mogeneous harmonic polynomials H,, j given by

H .(x) = C J x a  j = 1,...,2n+1"" n,j a '
[s]=n

form a (maximal) linearly independent system in H n
n

Using spherical coordinates

x = lxi (sinecosA , sin~sinA ,Cos)

we obtain

I (I+2) 1 2 3
Hn .(x) = IxIn Z C (sin ecos Asinl XOs )
n [a]=n a

The functions

{H
nj j=1,...,2n+1

given by
(al+a2  a a^ ,,3

H nE(a) = OC sin ecos Xsin Xcos 8

O1+C2+O3=n 1 2 3

([€o , [ = (sinecosA , sin~sinX , cosa) T )

form a linearly independent system of surface

spherical harmonics of order n.

" . . . . . . .

* ***'..t. -
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Computational Aspects: In each row the matrix m

contains three elements different from zero: the

first of them is a diagonal element. Therefore, the

matrix m (incl. its associated "index matrix") re-

quires only

5n (n-i)

locations of storage if an optimal storage scheme

is used. (Remark that complete storage needs

n - 2n 3  n - 2n

locations).

If we look at the special structure of the so-

lution matrix

= ((C 1 ) , ... , (c 2 n+)

we have at most n 2-n+1 non-vanishing elements in

each column vector (CJ). Indeed, the total number

is less. This gives rise for a further reduction in

storage requirements.

Finally, it should be emphasized that exact

computation, i. e. addition, subtraction, multipli-

cation in integer mode must be performed strictly

in the available range of the integer constants

(determined by the architecture of the computer).

-
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That means all data generated in the course of the

calculations should be as small as possible. An

efficient tool is decomposition into a product of

prime numbers.

Remark: The loss of precision using real computa-

tion has not been investigated by the author.

Examples: Let us demonstrate the technique of cal-

culating the matrix c for two examples.

Example 1: n = 3

Then an elementary calculation yields

n+2 10
2

(2) = 3
2

Every homogeneous harmonic polymial H 3  H 3 may

be represented in the form:

3 2 2
i1,(x) = C3 o x1  + C2 0 xx 2  + Co xx

3 3001 21 1 2201 1 3

2 2

+ C xx +C Xx + C x

2

003 3

(x = (XX 2 ,x3 )T) .

J29.
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H 3 has to fulfill the differential equation

Ax H 3(x) = 0

i. e.

6 c300 + 2 C21 0 x2  + 2 C20 1 x 3

+ 2 C120 x I  + 6 c030 x 2  + 2 C021 x 3

+ 2 C1 0 2 x1  + 2 C0 1 2 x 2  + 6 c x102 1012 2003 3

= 0

Since A H (x) = 0 identically for all x e R3 we get
x 3(n) = 3 equations

2

6 c + 2 C + 2C 1 0 2  = 0
300 12010

2 C + 6C + 2 C12 0210 030 + 021

2 C201 + 2 C021 + 6 c003 = 0

Using the introduced order for the coefficients C

(a] 3, the equation mc = 0 reads in matrix nota-

tion

S

*. . .. * .
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6 00 : 20 20000 C 0

0 2 0 o o o 6 000 C210 0

00 2 : 000 0 2 0 6  C301 0

C120  0
Cll 0

C 102  0

C030 0

C0 21  0

C012  0

C00 3  0

where we have marked the partitioning of the matrix

m and the vector (Ce) by dashed lines.

If we choose

C I - C -120 0 -1 C111 = 003 0

the linear system is uniquely solved by the vector

0 , 0 1, 0, 0 , T

Multiplying this vector by 3 all components become

integers

T T
(Cc) =(1 ,0 ,0 -3 0 0 0 0 0 0

In the same way we generate a set of 7 linearly in-

dependent solutions of the above system the compo-

nents of which are all integers, viz.

- . ..°-.
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(C ) = (0 , 0 , o : o , - , o , o , , , T

(c, , o , , -3 , 0 , 0 , 0 )

(C (0 , 3 , 0 0 , 0 , 0 ,-1 , 0 , 0 , )

(C5) = (0 , 0 , 1 0 , 0 , 0 , 0 , -1 , 0 , )

6T(Ca (0 , 1 , o o , 0 , 0 , , 0 0 -1 , )

(C (0 , 0 , 3 0 o , 0 , 0 , 0 , 0 , 0 , -1)

Thus the following linearly independent system

{H3,j j=l,...,7 of homogeneous harmonic polynomials

of degree 3 is generated by the following functions:

H (x) = 1 x 3 x x

3, 2 (x) = -1 123

H3 3 (x) = I x23 x

H3,(X) : X3 - x 2

H3,3(x =1•x1 x3 - 3 xH 3 () 32 x2 - 1 X

H (x) = 1 2 x2  - 2
3,5 1 3 X2

H (X)= x 2  -1 X X
2

3,6 1 X 2  2 3

H 37(X) = 3x2 x 3 - x3

31

[..............................
* . - . . . . .
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Table: n =3

H (x) =1 3 0 03,1
-3 1 2 0

H3 3 (x)=1300

x x x

H 3 ,4 (x) = 3 2 1 0

-1 0 3 0

xx x

H 3 (x) =1 2 0 1

-1 0 2 1

x x x

H (x) =1 2 1 03,6
-1 0 1 2

x x2 x3

H (x) =3 2 0 1
3,7

-1 00 3

Example 2: n =5

* Now we have
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(n+2) 21
2 -

(n) - 10
2 -

Hence,

(n+2) n
2fl 2":( 2 )

- ( )= 11

Every homogeneous polynomial of degree 5 may be

written in the form

H (x) = Z Cx
5 (Cx]=5 a

"al I 2 Ot

1+2+3= C 2t 1 2 3
2 3 l=5 1 2 3

Explicitly,

x =500 1 +410 X1 x2  401 3

320 1 2 311 X1 2 3 302 1 3

230 1 2 211 1 2 3 212 1 2 3

+203 x, x iC4o 1 x 2 c 131 '1 x2X 3

+C xx2 x2 +C3 +Cx4

+ 1 22 1 ~2 ~3 11l3 x1 X2 X3 C1 0 4 x'1  x3

050 2 041 2 3 032 2 3

023 2 3 014 X 2 X 3 C05
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Hence, the equation

A H(x) = 0 , x e R3

is equivalent to

20 CoX3 + 12 CoX2 + 12 C0x 2 x 6C x x 2 6 C3 1 1 xxx
50C 1012 4D1x1  K3  320 1 2311 2 3

cc3 2 2 x2 12 2

3201x 230 1x x2 + 2 C 2 1 1 3 + 2 C140 12x + 131 1x 2 3

*2C 3+ 2 2 2C xx 2 + 6C
302 1 2 C210x1x2 + 6 C203x1 x3  122X1X2 113XlX2X3

2 3Cx2  
2 2C x 2  3 26 C302X3 + 2 C230 X2 + 2 C211 X2X3 + 2 C212 X2x3+ 2 C203 X3

*2 C1o 2 2X+ 20 Co x3 12 Co1 x2 x + 6c x x2 + 2C x3
1213 002 012 3 032 2 3 023 3
2 3 2 2 3+12 C +x 2C 6 C xx+1 x 20 C x10413 032 2 6 02 3 x2 x3 .1 0 1 4 K2 3  005 3

=0

But this gives

20 C500 + 2 C320 + 2 C302 =0

12 C + 6 c230 + 2 C212 =0

12 CO 1 + 2 C + 6 C - 041+ 221 203
6 C + 12 C1 4 0 + 122 0

320 +214 12

6 c 6 6c + 6 c =0311 + 131 113
6 C 3 0 2 + 2 C 12 2 + 12 C1 04 =0

.. :
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2 C2 3 0 + 20 C0 5 0 + 2 Co3 2 = 0

2 C2 1 1 + 12 C0 4 1 + 6C 0 2 3 =0

2 C 2 1 2 + 6 C0 3 2 + 12 C0 1 4 = 0

2 C203 + 2 C023 + 20C005 0

These equations can be rewritten in matrix notation

as follows

C5 0 0

4 410

C401

C320

C311

20 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C302

0 12 0 0 0 0 6 0 2 0: 0 0 0 0 0 0 0 0 0 0 0 C221

S0 012 0 0 0 0 2 0 6 0 0 0 0 0 0 0 0 0 00 C21 2

0 0 0 6 0 0 0 0 0 0 12 0 2 0 0 0 0 0 0 00 C,-.., 203S0 0 0 0 6 0 0 0 0 0"0 6 0 6 0 0 0 0 0 0 o0 E**14
14 0

0 0 0 0 0 6 0 0 0 0 0 0 2 0 12 0 0 0 0 0 0 C131
0 0 0 0 0 0 2 0 0 0 0 0 0 0 020 0 2 0 0 0 C122

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 12 0 6 0 0 Cl30000000 0 2 oo 00000060120 C10
00 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 20 C050

C0 4 1

Co~C
C032D Coz
C023
C0 14

C005

.

?.

, j:. / : . . ...
" : ,: >,,c,, . - -, -,: *,. ,, -. , " ' = , • ;- - .-5~ *
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where we have again marked the partitioning of the

matrix and the vector in the indicated way.

We choose C = -1 , C1 3 1 ... 0 CO 5 =0 . Then

the linear system is uniquely solvable by the the

vector

1 "

0 , 0 , 2 , 0, 0, , 0 , 0 , 0 -1 , 0 , ... , 0)

Multiplying this vector by the factor 5 all compo-

nents become is.-egers

C1) = (-1, 0, 0, 10, 0, , 0, 0 , 0 , 0 -5, 0, ... , ) T

In the same way we generate a set of 11 linearly in-

dependent solutions of the above system the compo-

nents of which are integers by

(i) choosing the lower part of the vector

identically 0 besides one component

(ii) solving the system by backward substitution

(iii) multiplying every resulting vector by an

appropriate integer.

According to this procedure the following system is

generated

2 2.-.
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x I x 2  x 3

H (X) = - 1 5 0 0

+10 3 2 0

-5 1 4 0

x I x2  x 3

H ,2(x) = + 1 3 1 1

-1 1 3 1

x I x 2  x 3

H ,3(x) 1 -15 0 0
+ 5 3 2 0

+ 5 3 0 2

-15 1 2 2

x I x2  x 3

H5 , 4 (x) = + 1 3 1 1

xl x2  x

H (x) = - 1 5 0 0

5,5
+10 3 0 2

-5 1 0 4

xl x 2  x 3

H5 ,6(x) = - 5 4 1 0

+10 2 3 0

- 0 5 0

xl x 2  x

H,(x) = - 1 4 0 1
5,7

+6 2 2 1

-1 0 4 1

JL
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N

x l X2  X3

"1 115 e(x) = - 1 4 1 0

+ 1 2 3 0

+ 3 2 1 2

-10 3 2

XI X2  X3

H5 9 (x) 1 4 0 1

+ 3 2 2 1

+ 1 2 0 3

-1 0 2 3

-ixl x2  x 3

H 5 l(x) = - 1 4 1 0
+ 6 2 1 2

-1 0 1 4

x I x2  X3
H ,1(x) = - 5 4 0 1

+10 2 0 3

- 0 0 5

In Appendix 1 we give a list for the first linearly

independent systems of homogeneous harmonic poly-

nomials H for n = 3 through n = 10.

,n
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7. Exact Computation of Orthonormal Systems of

Homogeneous Harmonic Polynomials

Corresponding to the linearly independent system

of homogeneous harmonic polynomials of degree n

i n,j j=l,...,2n+l

an orthogonal system

n,j j=l,...,2n+l

can be constructed as usual (according to the well-

known Gram-Schmidt process):

The functions Hnj are computed recursively. We

start from

II = H .(7.1)

n,1 n,1

Then we set

n -

an 1 n , H +H . (7.2)

n n,1

The coefficient a has to be chosen such that"..2,1 n,2

"- is orthogonal to H 1 :

Hn,2 ' Hn,1)P =0(7)
n

It turns out that

S-



(H -- 7 - )

2Hn, , H n,(7.4)

It should be noted that numerator and denominator

may be determined exactly (cf. (2.5)).

Now, let

a n + n +- (7-5)Hn, 3 - 3 ,1 Hn,i 3 ,2 H, n,

The requirements

n,3 Hn,1)P n= 0

(7.6)

(in,3  H n 2 )Pn = 0

lead to

(HH

nn,3 n,i Pn

(7.7)
(n,3 n,2)P

(n,2  n 2)Pn

Again, the coefficients can be deduced exclusively

by integer operations.
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Analogously we get, in general,

+ n +H
n,k = ak , n, 1 a,k- "n,k- n ,k (7.8)

(k = 2,...,2n+I)

H =H (7.9)
n,1 n,1

where the coefficients

(H ,
n n,k n,s Pna = -- H(7.10)
,s ( , )" n,s n,s P

are computable exactly by integer operations, i. e.

a is known exactly as fraction of integers.
k,s

According to the orthogonalization scheme, each

function H is a linear combination of the func-n,j
tions

H n,1 ' n,2n+l

The coefficients of this linear combination can be

obtained exactly as rational numbers, too. Thus

there exists a vector

(Ej)

such that

H (x) = E x , j 1,...,2n+1 (7.11), ~n,j []n

a n
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The vector: (CJ=1,...,2n+1, form a matrix cex-

eluivey cnsitin offractions of integers (as-

sumed all numbers in the course of computation have

been calculated in such a way that numerator and

denominator are known as integers).

There exists a sequence of homogeneous harmonic

polynomials

n,j J=1,...,2n+1

with

n~j ~l = 0 for i41

viz.:

- n -nH akl1 H n1+ +. +ak. H + H kn,k nk- n,k-1 I

(k =2,...,2n+1)

H, Hn,1

In addition, a sequence

(K (712
n,j J=1,...,2n-1 (.2

can be constructed so as to have the property

Ifor j =
(K n, K nl)P = jJ.

n ~ n i10 for j I~
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The functions Knj can be obtained by dividing

each element Hnj by its norm

n,j

KHK .= nJ

nj nj n,j P
n

The sequence

{Kn,j j=1,...,2n+1

forms an orthonormal system of homogeneous harmonic

polynomials of degree n.

Provided the expression

(fn,j 'fn, i)P
n

has been stored as radicant of an integer, the

functions

{K .}n,j j=1,...,2n+l

are available exactly, too. The exactness is of basic

importance. It implies the stability of the solution

process. In fact, the method is constructed so as

to have no sensitivity to computational errors.

To any orthonormal system of homogeneous harmonic

polynomials {K n .. Zn+1 in (Hn •
n

• . . _ . . . - . . o - .-- . . . .. . . . L, - -. , . . , '. . .. . ._-_• " . . . ' . ' . . . - . . ,
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there corresponds an orthonormal system of spherical

harmonics {S* in (S (nj J=1,...,2n+1 Lo
given by

S (-a K I ~(7.13)
Sn n n,j

According to our orthonormalization process,

each element S * .is available as followsn~j

SJ E) = a E MW i 7.
n~j (a]=n

where we have set

a (7.15)
n, (HnjP

Hence, the radical sign and the division are the

only sources for rounding errors.

Since spherical harmonics of different order are

orthogonal we finally find:

The system

(a..4) a a at
Sl CA -*= sn 1 2 0 o 1 XSin 2XCOS 38
n.j(E =.4 1 2 3~ aNY 3

nj9 n,jp

T(j=1,...,2n+1 E (sincosX ,sinsinX cose))
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is orthonormal in the sense

(SS * 2 6n 61
n,l ~ L 2(Q) k I

Summarizing our results we obtain:

Each element S* of the the orthonormal system

Sn,j ,=1,...,2n+1

of surface spherical harmonics of order n may

be represented in the form

S* .(E)= Z E

nco ,snXo

O11 +a2+ct3 n at10'2a3

(j 1,...,2n+l, (sincosX sirnsinX , cosO)T
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where the coefficients B1 are given as follows

=a

(Hnj 'Hnj)p n

and the valuesOL a

~nj n, n~ P an

can be determined exclusively by integer opera-

~tions.

Examples: Again, we discuss the orders n = 3 and

"" n -- 5.
Example 1: n- 3

According to the aforementioned orthonormaliza-

tion process due to Gram - Schmidt we are able to

deduce from the maximal system of linearly indepen-

dent homogeneous harmonic polynomials

(3, J) j=1,... ,7

an orthogonal system

3,J J=1,...,7

The resulting functions are listed below:

. .o

4 * * .*°* . ~. .
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i3,(x) x3 - 3 xlx2
3,1 1 1 2

H3 ,2 (x) = xx 31 +lX _tx I x

3, 2 (X) x - x 2 -

H3,3()= 2 x 1 12x3 2 2
H 31 (X) x~x I -

H 3 6(x) = x2  x23
12 2

H(X) x2 x2x
3,5 1 + 2 23

- 2 2 - 3

H3 7 (x) 3x I x3 + 3 x 2 x 3  32 x

These functions may be rewritten in the following

form:

H (X) = 1 -20. 0. 3x0 x0
3,1 23 3

01 1203+ (-1)*2 .3 x 0

3, 2(x) 1 223 3 1

0 0 30 0H3 3 (x) = 1 *2 03 Ox x x
3,33 1 2 0

+ (-1) 2. 30. 10 2

0 1 210

H 3 ,4 (x) 1 *2 03 'x x2X3

+ (-1) 20 .30 0 3 0

.
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f3,5(x 1 2 3

+ (-0-2 0.3 0.x 0x 2 xI

fi 3 6 (x)~~ 2 1323

3, 1 123

2 0 01

-(12. 3 0 0 x x 2
01 201

H,7 (x = 1 2 3 x x
0, 1 0213

+~ ~ 1 32xx

1. 0. 00 3+ (-1)*2 3 x x

That means, all components C~f0 are decomposed

into an integer times a product of the prime num-

bers 2, 3.

Table: n =3

2 3 x x 2 x3

H (xW 1 0 0 3 0 0
3,1

-1 0 1 1 2 0

W3(x 1 0 0 1 1 1

3, . . . . . . . . .
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2 3 x I X 2 x 3

H3, 3 (x) 1 0 0 3 0 0

1 0 0 1 2 0

-1 2 0 1 0 2

3,4 (x) 1 0 1 2 1 0

-1 0 0 0 3 0

H3 5 (x) = 1 0 0 2 0 1

-1 0 0 0 2 1

3,6(x) 1 0 0 2 1 0

1 0 0 0 3 0

-1 2 0 0 1 2

W3 7 (x) = 1 0 1 2 0 1

1 0 1 0 2 1

-1 1 0 0 0 3

An easy calculation gives

(H ) 24 = 1-23.31
3,1 '3,1 3~3
3,2 ' I3,2)P3  1 = 1"20"30

(3, 3 , H 3,3 = 40 = 5"23"30

3
(fi3,4 H 396)p 24 = 1-23

3

(H , p H02.

3,6 ' 3 ,6P 3 40

2.1
(H ,H )p 6 -3,7 ' 3,7)P = 60 = 52 3

D"3
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Thus, the integers are decomposed into a (positive)

integer times a product of prime numbers < 3.

Consequently, the orthonormal system

(K }
3,j j=I,...,7

corresponding to

n,j J=1,...,7

may be listed as follows:

Table: n = 3

2 3 x 1 x 2 x 3

K,(x) 
3,1oo

-1 0 1 1 2 0

1 3 1 : normalization-factor

K 3 ,2 (x) =

1 0 0 1 1 1

1 0 0

KS,5(x)=

1 0 0 3 0 0

1 0 0 1 2 0

-1 2 0 1 0 2

-. 5 3 0

.~~~ . . . . . . ..

2.
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2 3 x I x 2 x 3

K3 , 4 (x) =
•1 0 1 2 1 0

-1 0 0 0 3 0

1 3 1

K3 , 5 (x) =
1 0 0 2 0 1

-1 0 0 0 2 1
"1 2 0

K3 ,6(x) =
1 0 0 2 1 0

1 0 0 0 3- 0

-1 2 0 0 1 2
5 3 0

K3 7 (x) =

"1 0 1 2 0 1

1 0 1 0 2 1

-1 1 0 0 0 3
-'5 2 1

For example, K3,7(x) reads explicitly

K3 7 (x) = ( 1"203X1 XO x 3
3+1.20 1 x 2

+1-20. 1.x x 1
*X 1  2 3

-1-2 1.3 *x 1 x2 3 ) /,1.
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Finally, the orthonormal system

of surface spherical harmonics of degree n (with re-

spect to -, 2 is given as followsL2(o)

s;,j(E)= -K 3 , Cx = IxI E E 0)

with

.- 105 = 1.3.5.7
3-

Example 2: n = 5

Analogous calculations give the following functions:

Table: n = 5

2 3 5 x x 2 x3

K5 1Ox) =

r-- 1 1 0 1 35,1-1 0 0 0 5 0 0

-1 0 0 1 1 4 0

1 7 1 1 normalization-factor

K59 (x) =

"1 0 0 0 3 1 1

-1 0 0 0 1 3 1
1 2 1 0

121

...........
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23 5 x 1 x 2 x 3

K 5,3 (X)

-1 0 0 0 5 0 0
1 1 0 0 3 2 0

1 3 0 0 3 0 2

1 0 1 0 1 4 0

-1 3 1 0 1 2 2

1 7 3 0

K 5 4 (x)

1 0 0 0 3 1 1

1 0 0 0 1 3 1

-1 1 0 0 1 1 3

1 2 L 0

K5 , 5 (x)

-1 0 0 0 5 0 0

-1 1 0 0 3 2 0

1 2 1 0 3 0 2

-1 0 0 0 1 4 0
1 2 1 0 1 2 2

-1 3 0 0 1 o 4
7 6 2 0

K5 ,6(x)

-1 0 0 1 4 1 0

1 0 1 2 3 0

-1 0 0 0 0 5 0

1711

. .- A - -
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2 3 5 x1 x 2 x 3

K5 , 7 (x)
-1 0 0 0 4 0 1

111 0 2 2 1

.'"-1 o o o o 4t 1

1 6 1 o

-1 0 1 0 0 1 0

-1 1 0 0 2 3 0
1 3 1 0 2 1 2

1 0 0 0 0 5 0

-1 3 0 0 0 3 2
1 7 3 0

K5,9(x)

1 1 0 0 2 0 3

1 o o o o 4i 1

-1 1 0 0 0 2 3
1 4 2 0

K5 , 10 (x) =

-1 0 0 0 4 1 0

-1 2 1 0 2 1 2

-1 0 0 0 0 5 0
. 1 2 1 0 0 3 2

-1 3 0 0 0 1 4
.- 7 6 2 0
-762

.. ..o**~ S.....*** * * * * * *--. -

o.--~.:2.-** *~fth. 4.
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2 3 5 x x x

,.K, (x) =
-1 0 1 1 41 0

-1 1 1 1 2 2 1
-1 3 0 1 2 0 3

-1 0 1 1 0 4 1

1 3 0 1 0 2 3

-1 3 0 0 0 0 5
7 6 3 1

The functions {s j ... ,1 now are given as

follows

s= . K5  -( j- (x = lxi ,

with

CL 5 10395 = 1*3"507"9-11

A list of the first orthonormal systems of homo-

geneous harmonic polynomials is given in Appen-

dix 2. In the same way as illustrated above, the

coefficients C and the normalization-factor are

split into an integar times a product of prime

numbers < n.

S-
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. 8. Relations to the Standard System of Spherical

Harmonics

Let

{H j. (n > 2) (8.1)n,j j=1, ... ,2n+1

be the sequence of linearly independent homogeneous

harmonic polynomials of degree n generated by exact

computation as described in chapter 6:

H .(x) = X C Ox , x e R (8.2)
n,J (G]=n a

where the column vectors (CJ ) of the matrix

1 2n+1c = ((C) , ... , (Cn )) (8.3)

consist exclusively of integers. (Remember that the

matrix c has the form

C (-(2n+l)84)
q } 2n+1

2n+1

n+2
where M is equal to 2 J and q is a (2n+l) by

(2n+1) diagonal matrix with integers different from

zero on its diagonal).

It is clear that the system
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(H *I 11 ~l} .,2. (8.5)

given by

H (,I) X C E at E
n,1 C ]=n

(8.6)

2n+1 OL
H n2+(E)= E C E~ , E n

forms a maximal linearly independent set of (sur-

face) spherical harmonics of order n.

On the other hand we know that the standard sy-

stern

Yn,1 - P no(Cose)

Y M P (cose) coax

Y n,3 M P n1 cs in(87

Y nn( = P nn (cosO) cos(nX)

Y n2+(E) = P nn(cos4) sin(nX)

E =sincosX , E =sinsinX E 3=Cosa)

is a maximal linearly independent system of (sur-

face) spherical harmonics of order n.

Our aim now is to point out some relations between
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these two systems of linearly independent spherical

harmonics.

As maximal linearly independent systems, both

are bases in the space Sn of (surface) spherical

harmonics of order n. Thus each element of the first

basis may be represented by a linear combination of

the second basis, and vice versa.

In particular, we have

2nYn (.[) = Z gi H ({ ) , [ £ 0 (8.8)
nj H n,2n+1-a 8

with suitable coefficients

i o
0 2n

This means that the system {Y is
n,j J=1,...,2n+1

representable as sum of monomials

Y .( ) = Z E . , C . (8.9)
..[ =n

Therefore, by comparison of (8.6), (8.8) and (8.9),

we obtain
Y .() = X Ej a

n,j [a]=n a
= .I 2n c c2n+ 1-p (810

• l jn= [e]=n

n 2n
" . Z £ .i 2n+1-p a

n = 2ng3  p a

[a]=n P=O P a

'. ,"
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2n

E giC~ni-p EPJ(8.10)

([*I , j=1,...,2n+1)

In vectorial form this yields

c g =e ,(8.12)

where c,e,g are given as follows

C1 2 .. 2n+1
n,0,0 n,0,0 n,0.

C1 2 C2n+1n+

C1 C2.. Cn (+
n-1,0,1 n-1,0,1 n**1,0,1 2

(2n+1)

C C 1  C ~
2,n-2,0 2,n-2,0 ... 2,n-2,0

2,0,n-2 2,0,n-2 2,,-C

.*.*.............*......*.................
C1 0 *. 0
c1 ,n- 1 ,0

1,n-2,122n1

0,

2nn+1

0 ... 0 C
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1 E2 E 2n+ 1
n,0,0 n,O,O n,0,0
E 1 I E 2  E 2n + 1

n-1,1,0 n-1,1,0 n-1, 1,0

E 1  E2 E E2 n +1
n-1,0,1 n-1,0,1 n-1,0,1

n+2

E1 E2 E2n+1 2n1
2,02,n-2,0 2,n-2,0

1 2 2n+12,,n-2,1 2,n-2,1 1 ,n-2,1

• • • 2n+ 1
E E2  E02n+-
l,0,n-1O lOn-1 °,n-

1 2 _2n+l

n,O O,n,O 0,n0

1 E2 _2n+1Eo,,n EO0* ... On

2n+l

and

1 2 2n+1
E2n E2 n E 2n

* 2n+ 1
1 2 2n+1

gO gO " "" g

2n+l

a nd

90 9 . 0
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According to the ordering of the multiindices in-

troduced in chapter 6 we are able to rewrite the

matrices c and e as follows:

1 2 2 1

1 2 C2n+1
2  C2  C2

1 C2  2n+1
C3  3 C3

1 2 2+

CC

M-(2n-1) m-(2n+1) M-(2n.1)

C .................

0. C~ 2  )

* . 0

05.................. 0

w * .. * - . . *
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and

1 2 E2n+lI

12 2n+lI
K2  2  K2

K1  2  2n+ 1
3 3 K3

1 E 2 _(3n-1) .. E2~
KM(,l-) M - M-(3n-1)

E1  K2  E 2 n+1
M-(2n+1) M-(2n+1) " M-(2n+1)

K1  K2  2n+l
M-(2n) M-(2n) M-(2n)

M-(2n-1) M-(2n-1) M-(2n-1)

1 K E2  E2n+1
M-n M- n

This leads to the linear equations

2n
E g3 c 2 ~~ = J (8.13)

M=n+2)
2
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From the special structure of the matrix c we de-

duce that
|wE j

SEM-(2n)l' gi~9n = I ,.,n1

,- CM( 2 n)

E-j. E M-(n+l)
n+l n j =

M-(n+l)

j EJ-

_ M-n
n cn+1 j .

M-n

0 2n+1 j=
C M

i. e.:

J = - {c( 2 n+l)-p,}-1 (8.14)Al M -I M-1"

. (p =0 ,...,2n)

In order to calculate these values we need the

coefficients EJ .- .. EJ  j = 1,...,2n+1.M-(2n) M

To this end we recall to our mind that
n-4m

2 km/ (-I) k (2n-2k) '

'P (cose) (sine)m/2  E ( (cos,)n-m -?k

.rn k=O 2nk!(n-k)!(n--2k)'
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Furthermore, it is well-known that

k
Cos (mx) E (-I) m! (cosAX)m-2 (sinl)k

k-0O (2k)!(m-2k)!

(8.15)

2 (_1)k M! cokm-2k-I 1 ~ k2k+I
sin(m) = Z (k+f)(~) (coA)(sn

Thus, an elementary computation gives

P (COW) cosWm)

2 k+ m -)' ~ i! (Zn-2k)!2km 121n -k

k=0 1=0 2k!'(n-k)!(n-m-Zk)!(21)!(m-21)!IIk~ 2
2

(8.16)

and

P (Cosa) Sin(mX)

[n_ m!(2n-1)

I E__ (-1)k+11I - x
jx k=O 1=0 2T' (n-k)! (n-m-2k)! (21+1) 1CI-21-1)!2 3

According to the polynomial theorem we obtain

1 1j2k =(x
2.ex2+x2 )k = k! 2a (8.17)
1 23 k Wi=
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Thus we find after an easy calculation

p nm (Cosa) cos(mx)

n-m] [m!]
2n~ 2 m-21 21 n-rn

x 1 E~ I E2 1 3 Xk
k=0 1=0 k 1 ~

and (8.18)

P (cosO) sin(mx)

2 2 r,"' am m-1-21 21+1 n-rn

k=0 1=0 k 11 ~ 3 X

where we have used the abbreviations

nR1,m = 1 k m! (2n-2k)!
k 2n (n-k) !(n-m-2k)!

a ()1 (21+1)!(m-21-1)!

and

k krI 2,r 2v -2r-2v
Xk E E= E'vE(TE' . (8.19)

We write out only those terms to be needed for the

determination of the values (8.14):

. .
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P"(cosO) COSos(?)

x 0 ont 0z(-) IC ____ .2 E 2pi+21J El.1 Cn-m-2g,

reap. 8.9

P 1 (cosO) Sin(mx)

kC 1__ _ ~1-2[ 0 1 !jJ42p1 n.-m-2p

k=O k m1 =O
2

(n

It is easy to see that

2 nkm1k2[m 2A21]nm2

k=0O k [Pn] pI(k-a)! 1 2 3

[n-in[ -fi

______ m2[-6] .2v,+2[!!] n-nvp2v
E 2SF=k vl(k-v). 12 .1 2 2 2 3

(m =0,(1),n)

and (8.20)

7,4 .
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2~ k 2[1: m--(i~ j 1 i+2p Fn-m- 2 p~

k=O P!(-p! 1
2

n ____I m m-1-2[ !!!Z-] 2v-2['! n-m-2v

O v!( -k-vH 1  ( M-1 F; 2 E2 2 E 3

(m =1()n

Consequently we find

*=0:

2n I

Yn,lE grocoe E09 n,2n+l-p

with

[41
02 k n, (RIkP)

2 2 2

1(-I )n+ 1

I f o r p = 0 , 2 n - 1 2

0 otherwise

1< * < niu even:

Y 2(F;) =PM,(COsF) cos(mk) p X - ,2~-

with
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m kC2nl

k 2 2

2m2

0 otherwise

1 < nju odd:

n~2n

22
nm m P nm- 1 ,nII

2n2

1m n ~ vn

witheris

m -Sevn

'S2n

. . . . . . . . . . . . . . . . . . . .. . . ..l
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~ n,m 1(2ri+i)p-

M-2k (p---) I(k -- nIlf)1  M-tA
2 ~- 2 2

an+ 1

=p for p =n+rn,(2),2n-[1 +(2)1

0 otherwise

I < m < nim odd:

y P (cosO) sin(mX) E H Mn+

with

2n n,m 1 { 2n+l-IJ}-1

2n-i P k (H 2 !)(k - P )2 m-!
22

20+1 =for p ,2,n-ra + 1 f

0 otherwise

Furthermore we get (cf. (0.5))

2n1

n,1 1 n, 2n+ I-p
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Y ,(O) = 2(2n+l) 2n-,[ t~ H_- n,+u(O)
2n

(j = 2,(1),2n+l)

Therefore the addition theorem may be rewritten

as follows:

Let (Hn,j =,.,2n+ be the sequence of linear-

ly independent homogeneous harmonic polynomials

of degree n generated by exact computation (cf.

chapter 6). Then, for any two ,n e 02,

Pn ( En)

2n 2n
X X Sp gvg H 1 ,2~ )- H (r2n I)

I--O v=O

K2rz+1 (n IJ) 2.n 2n
+ 2 Z Z Z E H gJH n(E) -(n)"j=2 (n+[413), P-- v-o v ,nlp ,2l

Examples:

We demonstrate some relations between the system

(8.6) and (8.7) for the degrees n =3,5

.~~~~~~~~~~~~~~ . . . . • .o . . o . o • . . . • • • • . .. .. . , • . . . . . .



- 97 -

Example 1: n = 3

P (cose) E 2 = Y (y )

30 3 T i3 T 23,1

P (Coso) cosX 6 E E 2 3 3 _3 E2 = M
31 1 3 21 2 12 3,2

31(cosO) sin E E ~2 3 E ~12 3~ = M

P3 1(cose) cos(2A) = 15 E 15 = Y3,2(E)

P32 (cos) sin(2X) 3 21 3 = 3,

P32(cos) cos(3X) = 15 3  = Y3E(2)

P33 (cose) sin(3A) = 1k 2 - 15 = Y3 ,6( )

3 2 T  =sinecosX , l2=sinsinX , F3=coso)

!
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Thus, we have

1 0 1 0 0 0 0

0 0 0 3 0 1 0

o 0 0 0 1 0 3b:: .0 ~.... 0.....0.....0.....1.....0.....

-3 0 0 0 0 0 0

0 -1 0 0 0 0 0
0 0 -3 0 0 0 0

0 0 0 -1 0 0 0
0 0 0 0 -1 0 0

0 0 0 0 0 -1 0
0 0 0 0 0 0 -1

and

0 -2 0 0 0 15 0

.... -. o. o*o S

"" 3 o

o 3 0 0 0 -45 0
2

0 0 0 0 30 0 0

0 6 0 0 0 0 0

0 0 -- 0 0 0 -15
3 

'
-' 0 0 -15 0 0 0

0 0 3 0 0 0 0

1 0 0 0 0 0 0

This yields

0 -~ 0 0 0 15 0
2

0 0 0 0 -30 0 0

0 -2 0 0 0 0 0

g 0 0 3 0 0 0 15
3 0 0 15 0 0 0

0 0 -3 0 0 0 0

-1 0 0 0 0 0 0

I°

. .
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* Consequently, we find

= 3~ H 3 5 ~ 1-H 3 7 W

Y W H 3 1 (E) - 2.H 3 3 (E)
Y3 ,2(2 3,1 3

Y 3 ,3 W = 15f H 3 ,4 -3- 36

Y 3 5 W~ = -30 H3 2 M~

Y W = 150 H M~
3,5 3,12

Y 3 ,6() = 15 H 3 ,1 M

For example, we have

03 03,3c F 1 H( M
1 0 M-3 3,4

(Observe that CM43

= 15 H3 4 (0
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Moreover, we get

=* v7 2H.~3 (~

y, 2 (E) ( 31 (E) 3 3 W)

=;3" "V 3, 3,6

-7( 15 H3 4 ( ))

Y; 4 (E) = 3 ,5

Y;,5 (E) = 6- (-30 H3, 2())

Y;,6(E) = T (3,1

Y;,7 (E) - 360 3,4

Example 2: n = 5

5,1 go 5,11 2 H5,9 ( ( 85, 7 (E)

Y, 2 ( ) g6 H5 ,5 ( g H5 , 3( ) 2 H5 ,1 ()

+ 33 ,Y5 , 3() = g H5 , 10()+ g3 H5 , 8 (E) + g5 H5 ,6 ()

Y5,4 (  = g2 85,9 ( 4) g/ 5,7( )

Y ( , (+ g5,2(

Y5,6( 6 85,3 (1) 5,1(
y ()= 97H ()+ glO HSE

Y5,7() 3 g 85,8 ( 5) 7 H5,6()

8
Y 5,8(E) = g4 H5, 7 (E

)

* . . -
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y (E) g 9~ H5 2

5,9 ) 9 g1 5,2(~
5,10

y( ~ g 11H

We omit the explicit calculation of the coeffi-

cienits.
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9. Representation of External Gravitational

Potential by Means of Spherical Harmonics

(Exterior Dirichlet's Problem)

A surface S c R 3 will be called regular, if it

satisfies the following properties:

(i) S divides three-dimensional Euclidean space R
3

uniquely into the bounded region E = E. (inner1

space) and the unbounded region Ee (outer

space) defined by E = R3 -E E - E S. The
e e e e

origin belongs to E..1

(ii) S is a closed and compact surface with no

double points.

(iii) S is a C(2) - surface.

From the definition it is clear that all (geo-

detically relevant) earth models are included. Re-

gular surfaces are for example sphere, ellipsoid,

spheroid, telluroid or real (regular) earth's sur-

face).

Let V be a function satisfying the following

properties:

(i) V is continuous in E = E v S and twice con-
e e

tinuously differentiable in E
e
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(ii) V is harmonic in E :e

AV(x) = 0 for x c E e

(iii) V is regular at infinity:

IV(x)I = 0 ( T)

IVV(x)I = 0
x l

We consider the countably infinite system of

outer harmonics

1 H (x) (9.1)

Ix12n+1 n,j n=0,1,...Ixl j~l,...,2n+l

where, for each n, the sequence

{H 3 } j. 2n1(9.2)fHn,j lj=l,...,2n+1 92

forms a linearly independent system of homogeneous

harmonic polynomials of degree n (cf. chapter 6).

Then there exists a system of outer harmonics

(n,j In=0,1I,...(9 3

j=l , . . . ,2n+1

orthonormal with respect to the L2-inner product:



-104-

(H* 1,H f H*j(y) H* 1 (y) dw

(Ilsil: total surface of S). According to the expan-
sion theorem developed by the author (1983) the po-

tential V can be represented by the series

V(x)= I I {r ,jfV(y) H*4 y daw} H*(x) ,(9.5)

n=0 j = II II n, j nj

where the numbers

(VH*~~ .= 4f V(y) Hn
n,* j2 s 11 * (y) dw

are the Fourier (or orthogonal) coefficients of V on

S with respect to the system{H }
n,j n=0,1,...
J =1,..., 2n+ 1

More explicitly this reads: given an error bound

6 > 0, then there exists an integer N =N(E.) such

that

IV(x) - V(x)I < (9.6)

with

N 2n+1I
VN(X) I 11 V(y) Hn .(y) dwl H W(x (9.7)

n1= j = II IS1,1,

holds for all x c G C E and diat (G,S) > p > 0. In
e

each compact subset K C E with dist (K,S) > p > 0e
the convergence is uniform

sup IV(x) - V(x) E
XCKN
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The series guarantees ordinary pointwise conver-

gence, in fact, in the (whole) outer space E e

In the context of boundary-value problems of po-

tential theory

N 2n+l

VN(X) = nI I f f f(y) (n,jy) dw} H* (x)

may be interpreted as approximation to the exterior

Dirichlet's problem

AV(x) = 0 for x c E
e

IV(x)l 0 IV(x)I = 0

OIx

V(x) f(x) for x e S (f C C(O)(S))

by the orthogonal expansion in terms of outer har-

monics H* . of order < N.

When our expansion theorem is formulated especial-

ly for a sphere S about the origin with radius R, we

are led to the classical results (cf. Introduction).

L.

.
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Examples: In order to get an impression of the me-

thod of computing a potential V by the the (gene-

ralized) Fourier procedure proposed here we discuss

some sample examples.

(i) Boundaries

Three boundaries will be used in the examples,

their cross-sections in the (x , x3)-plane

are shown in the figures

X3 4 f
I I

Surface I Surface 2 Surface 3

The first surface (Surface 1) is a sphere gi-
ven by x c R3 , X)X1 1X3T with2 2

xI = Iiec s

x 1 s urfacea2 0 < S f 3

3x3 = [ os : : : J

. *** *...o.-- . . .
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The second surface (Surface 2) is an ellipsoid

given by

x = 1 sinO coal

x2  3sin# sin. 0< <, 1
x = 2 cosO 0 < A < 2z

The third surface (Surface 3) is given by

x1 =2 r(O) sinO cosa

x = 3 r(O) sinesinA 0 < 0 < t ]
" = r(e) cosO 0 < A < 2J

with

r(e) = (cos (28) + (1O- sin 2 (28))1/211/2.

(ii) Potentials

We want to give expansions for the following

two potentials:

Xl x_3

S(1)(x) 1 (eIx 2 Cosos + e Ix12 sin (1))
=T 2xI2

.............................. ".
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(~2~) 1 1
I X 3 32]1/25 )2 - 4)2 41X12 3

(xT -(xjx x3

The potentials V(1 , are the Kelvin

transforms of the functions given by

e Cos (x 2 ) + e 3sin x,

Nx 2 + (x 4) 2 + ( /
1-5) 2-3)

respectively. The same functions have been stu-

died by K. E. Atkinson (1980/1982) using inte-

gral equation methods.

(iii) Numerical Method

The numerical computation was done via the

so-called normal equations (using Cholesky's

method) as described by the author (cf. W.

Freeden (1983), chapt. 11).

The inner products (integrals) occuring in

the normal equations were computed by the ap-

proximate sums

f f (x) dw fm f(x

A I.m l

S 12.
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where (x m 1m2 represents a (nearly) uniform

distribution of nodes on S with total number A.

In our examples the subdivision (x I on S

is generated by polar coordinates

.

2 2, ,m

"'=(sir* coal in sinX Cos
mlm mI  Mm 2Srml mil~mt°Sm

with
I I

m 2:X = m2  2

mlm 2  2n 2 sin(m ) n2 sin(eml)
1m

J ' "'" IO mI -< n , 0< m2 --<n 2 sineml

X11nn2 (fixed) positive integers

We choose especially n I = 21 , n2 = 42. Then

the total sum of nodes on S is A = 562.

(iv) Error estimates

We set

E (1) 0 v1) -v (1)

E~2  (2) 02 _ V(2 )
N N

We give an impression of the error for a set

of selected points.

..........................................

±"o S A . .'. .'~.A 22 '. A ..-.
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Table 1: Expansion of V(1) (Surface 1)

x x2  x V(1) E1) E(1)

1.0 1.5 2.0 0.4845 E+O -0.31 E-6 -0.34 E-. 8

1.5 0.0 0.0 0.1711 E+1 -c.82 E-4 -0.79 E- 6

3.0 0.0 0.0 0.5743 E+o -0.64 E-6 -0.34 E- 8

0.0 2.0 0.0 o.4388 E+O o.11 E-4 -o.48 E.- 7

0.0 4.0 0.0 0.2422 E+0 0.84 E-7 0.12 E-11

0.0 0.0 2.5 0.4000 E+O 0.53 E-8 0.92 E- 9

0.0 0.0 5.0 0.2000 E+O o.76 E-9 0.15 E-- 9

Table 2: Expansion of V (Surface 2)

Xl x2 x3  V E 5 E6

1.0 1.5 2.0 o.4845 E+O -0.91 E-5 -0.76 E- 6

1.5 0.0 0.0 0.1711 E+I -0.19 E-4 -0.72 E- 6

3.0 0.0 0.0 0.5743 E+O -0.13 E-5 -0.99 E.- 7

0.0 2.0 0.0 0.4388 E+O 0.54 E-4 -0.54 E- 6

0.0 4.0 0.0 0.2422 E+O 0.35 E-5 -0.24 E- 7

0.0 0.0 2.5 0.4000 E+O -0.74 E-6 0.36 E- 8

0.0 0.0 5.0 0.2000 E+O 0.19 E-6 -0.95 E- 9

....................................................
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Table 3: Expansion of V(1 (Surface 3)

(1 3(1 x (1E)E
1 2 3 V5 6

0.0 0.0 2.0 0.5000 E+0 -0.i18 E-3 -o. 66 E-6

0.0 0.0 4.0 0.2500 E+0 -0.24 E-3 0.29 E-6

0.7 0.0 0.0 0.7375 E+0 0.82 E-3 -0.98 E-3

1.4 0.0 0.0 0.1927 E+1 -0.35 E-3 -o.58 E-3
0.0 1.0 0.0 053 0 0.5-2 -0.52 E-4

0.0 2.0 0.0 o.4388 E-e. -0.12 E-2 0.17 E-4

1.0 1.5 0.75 0.7765 3+0 -.0.23 E-2 -.0.39 E-3

2.0 3.0 1.5 0.3233 E+0 -.0.57 E-3 -0.91 E-4
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Table 4: Expansion of V(2) (Surface 1)

x x2  xE v(2 )  (2) E(2 )

1.0 1.5 2.0 0.5509 E-1 0.33 E- 9 0.23 E-10

1.5 0.0 0.0 o.1008 E+O 0.88 E- 8 -0.99 E- 9

3.0 0.0 0.0 o.4874 E-1 0.73 E-1O -0.39 E-11

0.0 2.0 0.0 0.7352 E-I -0.24 E- 8 -0.20 E- 9

o.0 4.0 o.0 0.36o6 E-I -0.17 E-10 -0.10 E-11

0.0 0.0 2.5 0.5788 E-i -0.59 E- 9 -0.35 E-11

0.0 0.0 5.0 0.2862 E-1 -0.35 E-11 -0.51 E-13

Table 5: Expansion of V(2) (Surface 2)

x x x ( 2 )  E(2)
1 2 x3 vE 5 E 6

1.0 1.5 2.0 0.5509 E-1 0.44 E- 8 0.12 E- 9

1.5 0.0 0.0 0.1008 E+O -0.44 E- 9 -0.10 E- 9

3.0 0.0 0. 0.4874 E-1 -0.27 E- 9 -0.55 E-11

0.0 2.0 0.0 0.7352 E-I -0.98 E- 8 -0.76 E- 9

o.0 4.o 0.0 0.3606 E-1 -0.25 E- 9 -0.64 E-10

0.0 0.0 2.5 0.5788 E-1 0.97 E- 8 0.13 E- 8

0.0 0.0 5.0 0.2862 E-1 o.85 E- 9 0.98 E-10
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Table 6: Expansion of V(2) (Surface 3)

x X x v(2) E( 2 )  E(2)

1 2 X 5 6

0.0 0.0 2.0 0.7274 E-t -0.21 E-7 -o.48 E-8

0.0 0.0 4.0 0.3587 E-1 -0.85 E-7 -0.12 E-7
0.7 0.0 0.0 0.2325 E+O O.14 E-6 -O.19 E-6

1.4 0.0 0.0 o.to85 E+O -0.53 E-6 -0.15 E-6
0.0 1.0 0.0 0.1525 E+O 0.45 E-6 -0.11 E-6

0.0 2.0 0.0 0.7352 E-1 0.93 E-7 0.22 E-7

1.0 1.5 0.75 0.7782 E-1 0.92 E-7 -0.29 E-7

2.0 3.0 1.5 0.3752 E-1 -0.60 E-7 -0.20 E-7

. . . . . . . . . . .
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Appendix 1:

maximal linearly independent systems of homogeneous

harmonic polynomials for n = 3 through n = 10 (cf.

chapter 6).
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Appendix 2:

orthonormal systems of homogeneous harmonic poly-

nomials for n =3 through n =10 (cf. chapter 7 ).
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Glossary of Notations:

U f (n/2 for even n

2 -I.(n-1)/2 for odd n

0 ,(1),kp O, .. k- k

pA 0 ,(2),2k p 0,2,...,2k-2,2k

(a] a I + C2  + CL3

L C! 1* 2 3

(a: multiindex)

a CL a
x x1  x 2  x 3

(~~ ~ )2 3 1 8 2

cl 0'2 a -3
a1x 1 2 3

E.................a........................ ..
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